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Overview of Complexity Theory

Example: Given two numbers  and , compute .x y x . y

• Design an algorithm to compute  that runs in  time.x . y T

• Prove that no algorithm exists that runs in less than  time.T

Algorithms

Haven’t been very successful 

Central Goal of Complexity Theory: Proving non-existence of efficient algorithms for

computational problems

Complexity Theory

w.r.t resources such as time, space, interactions, randomness, etc.
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What we actually do in Complexity Theory:

• Prove non-existence of efficient algorithms.

• Interrelate different complexity questions. For instance,

Question: Are problems  and  not solvable in polynomial time?P1 P2

Interrelation:  is not solvable in poly. timeP1    is not solvable in poly. time⟺ P2

• Classify problems based on the amount of resources required to solve them and 

    compare those classes.

For instance, let , , and  be the set of problems solvable in logspace, polynomial 

time, and polynomial space, respectively. 

X Y Z

(E.g. GeneralisedChess  P)∉

Then, .X ⊆ Y ⊆ Z
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• Are there problems solvable in  time that are not solvable in  time?O(n3) O(n)

We’ll learn about the following and more in this course:
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• Problems beyond NP. For instance,

        INDSET: Given a graph  and , decide if  has an independent set of size .G k ∈ ℤ+ G k
        Easily verifiable solutions to INDSET exist. (INDSET  NP)∈

• Given a directed graph  and , can we find whether  in logspace?G u, v ∈ G u ⇝ v
   Or is L  NL?=

EXACT-INDSET: Given a graph  and , decide if the size of the largest  

independent set of  is .

G k ∈ ℤ+

G k
Easily verifiable solutions to EXACT-INDSET seem to not exist. (EXACT-INDSET  )∈ Σp
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• Can we use randomness to speed up the computation?

        P = Set of problems that are polytime solvable by deterministic algorithm.

        BPP = Set of problems that are polytime solvable by probabilistic algorithm.

For instance,   

        PRIMES: Is  prime?x
        PIT (Polynomial Identity Testing): Given a multivariate polynomial with integer 

        coefficients, find whether there is an assignment of values to variables such that  

        polynomial evaluates to non-zero.

(Is in BPP. Was shown to be in P after a long effort. [AKS’02])

(Is in BPP, but not known to be in P.) 
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•  - Minors (15% each)30 %

•  - Major30 %

•    - Problem sets with solutions or solution links0 %

Book: Computational Complexity: A Modern Approach by Arora and Barak

Course Site: http://home.iitj.ac.in/~vimalraj/courses/ct/csl7140.html

Office Hours: Mail me to fix an appointment 


