
Lecture 1

Course Overview

Overview of Complexity Theory

Overview of Complexity Theory
Algorithms vs Complexity Theory:

Overview of Complexity Theory
Algorithms vs Complexity Theory:

Overview of Complexity Theory
Algorithms vs Complexity Theory:

Overview of Complexity Theory
Algorithms vs Complexity Theory:

Overview of Complexity Theory
Algorithms vs Complexity Theory:

Overview of Complexity Theory

Algorithms focus on solving computation problems efficiently,

Algorithms vs Complexity Theory:

Overview of Complexity Theory

Algorithms focus on solving computation problems efficiently,

Algorithms vs Complexity Theory:

while Complexity theory

Overview of Complexity Theory

Algorithms focus on solving computation problems efficiently,

Algorithms vs Complexity Theory:

while Complexity theory

studies inherent difficulty of problems.

Overview of Complexity Theory

Overview of Complexity Theory

Example: Given two numbers and , compute .x y x . y

Overview of Complexity Theory

Example: Given two numbers and , compute .x y x . y

• Design an algorithm to compute that runs in time.x . y T

Overview of Complexity Theory

Example: Given two numbers and , compute .x y x . y

• Design an algorithm to compute that runs in time.x . y T Algorithms

Overview of Complexity Theory

Example: Given two numbers and , compute .x y x . y

• Design an algorithm to compute that runs in time.x . y T

• Prove that no algorithm exists that runs in less than time.T

Algorithms

Overview of Complexity Theory

Example: Given two numbers and , compute .x y x . y

• Design an algorithm to compute that runs in time.x . y T

• Prove that no algorithm exists that runs in less than time.T

Algorithms

Complexity Theory

Overview of Complexity Theory

Example: Given two numbers and , compute .x y x . y

• Design an algorithm to compute that runs in time.x . y T

• Prove that no algorithm exists that runs in less than time.T

Algorithms

Central Goal of Complexity Theory: Proving non-existence of efficient algorithms for

Complexity Theory

Overview of Complexity Theory

Example: Given two numbers and , compute .x y x . y

• Design an algorithm to compute that runs in time.x . y T

• Prove that no algorithm exists that runs in less than time.T

Algorithms

Central Goal of Complexity Theory: Proving non-existence of efficient algorithms for

computational problems

Complexity Theory

Overview of Complexity Theory

Example: Given two numbers and , compute .x y x . y

• Design an algorithm to compute that runs in time.x . y T

• Prove that no algorithm exists that runs in less than time.T

Algorithms

Central Goal of Complexity Theory: Proving non-existence of efficient algorithms for

computational problems

Complexity Theory

w.r.t resources such as time,

Overview of Complexity Theory

Example: Given two numbers and , compute .x y x . y

• Design an algorithm to compute that runs in time.x . y T

• Prove that no algorithm exists that runs in less than time.T

Algorithms

Central Goal of Complexity Theory: Proving non-existence of efficient algorithms for

computational problems

Complexity Theory

w.r.t resources such as time, space,

Overview of Complexity Theory

Example: Given two numbers and , compute .x y x . y

• Design an algorithm to compute that runs in time.x . y T

• Prove that no algorithm exists that runs in less than time.T

Algorithms

Central Goal of Complexity Theory: Proving non-existence of efficient algorithms for

computational problems

Complexity Theory

w.r.t resources such as time, space, interactions,

Overview of Complexity Theory

Example: Given two numbers and , compute .x y x . y

• Design an algorithm to compute that runs in time.x . y T

• Prove that no algorithm exists that runs in less than time.T

Algorithms

Central Goal of Complexity Theory: Proving non-existence of efficient algorithms for

computational problems

Complexity Theory

w.r.t resources such as time, space, interactions, randomness, etc.

Overview of Complexity Theory

Example: Given two numbers and , compute .x y x . y

• Design an algorithm to compute that runs in time.x . y T

• Prove that no algorithm exists that runs in less than time.T

Algorithms

Haven’t been very successful

Central Goal of Complexity Theory: Proving non-existence of efficient algorithms for

computational problems

Complexity Theory

w.r.t resources such as time, space, interactions, randomness, etc.

Overview of Complexity Theory

Overview of Complexity Theory

What we actually do in Complexity Theory:

Overview of Complexity Theory

What we actually do in Complexity Theory:

• Prove non-existence of efficient algorithms.

Overview of Complexity Theory

What we actually do in Complexity Theory:

• Prove non-existence of efficient algorithms. (E.g. GeneralisedChess P)∉

Overview of Complexity Theory

What we actually do in Complexity Theory:

• Prove non-existence of efficient algorithms.

• Interrelate different complexity questions. For instance,

(E.g. GeneralisedChess P)∉

Overview of Complexity Theory

What we actually do in Complexity Theory:

• Prove non-existence of efficient algorithms.

• Interrelate different complexity questions. For instance,

Question: Are problems and not solvable in polynomial time?P1 P2

(E.g. GeneralisedChess P)∉

Overview of Complexity Theory

What we actually do in Complexity Theory:

• Prove non-existence of efficient algorithms.

• Interrelate different complexity questions. For instance,

Question: Are problems and not solvable in polynomial time?P1 P2

Interrelation: is not solvable in poly. timeP1

(E.g. GeneralisedChess P)∉

Overview of Complexity Theory

What we actually do in Complexity Theory:

• Prove non-existence of efficient algorithms.

• Interrelate different complexity questions. For instance,

Question: Are problems and not solvable in polynomial time?P1 P2

Interrelation: is not solvable in poly. timeP1 is not solvable in poly. time⟺ P2

(E.g. GeneralisedChess P)∉

Overview of Complexity Theory

What we actually do in Complexity Theory:

• Prove non-existence of efficient algorithms.

• Interrelate different complexity questions. For instance,

Question: Are problems and not solvable in polynomial time?P1 P2

Interrelation: is not solvable in poly. timeP1 is not solvable in poly. time⟺ P2

• Classify problems based on the amount of resources required to solve them and

 compare those classes.

(E.g. GeneralisedChess P)∉

Overview of Complexity Theory

What we actually do in Complexity Theory:

• Prove non-existence of efficient algorithms.

• Interrelate different complexity questions. For instance,

Question: Are problems and not solvable in polynomial time?P1 P2

Interrelation: is not solvable in poly. timeP1 is not solvable in poly. time⟺ P2

• Classify problems based on the amount of resources required to solve them and

 compare those classes.

For instance, let , , and be the set of problems solvable in logspace, polynomial

time, and polynomial space, respectively.

X Y Z

(E.g. GeneralisedChess P)∉

Overview of Complexity Theory

What we actually do in Complexity Theory:

• Prove non-existence of efficient algorithms.

• Interrelate different complexity questions. For instance,

Question: Are problems and not solvable in polynomial time?P1 P2

Interrelation: is not solvable in poly. timeP1 is not solvable in poly. time⟺ P2

• Classify problems based on the amount of resources required to solve them and

 compare those classes.

For instance, let , , and be the set of problems solvable in logspace, polynomial

time, and polynomial space, respectively.

X Y Z

(E.g. GeneralisedChess P)∉

Then, .X ⊆ Y ⊆ Z

Glimpses of this Course

Glimpses of this Course
We’ll learn about the following and more in this course:

Glimpses of this Course

• P vs NP:

We’ll learn about the following and more in this course:

Glimpses of this Course

• P vs NP:

P = Set of problems that are polynomial-time solvable.

We’ll learn about the following and more in this course:

Glimpses of this Course

• P vs NP:

P = Set of problems that are polynomial-time solvable.

NP = Set of problems whose solutions are polynomial-time verifiable.

We’ll learn about the following and more in this course:

Glimpses of this Course

• P vs NP:

P = Set of problems that are polynomial-time solvable.

NP = Set of problems whose solutions are polynomial-time verifiable.

For instance,

We’ll learn about the following and more in this course:

Glimpses of this Course

• P vs NP:

P = Set of problems that are polynomial-time solvable.

NP = Set of problems whose solutions are polynomial-time verifiable.

For instance,
 PATH: Given a graph and decide if there is a path from to .G u, v ∈ G, u v

We’ll learn about the following and more in this course:

Glimpses of this Course

• P vs NP:

P = Set of problems that are polynomial-time solvable.

NP = Set of problems whose solutions are polynomial-time verifiable.

For instance,
 PATH: Given a graph and decide if there is a path from to .G u, v ∈ G, u v
 HAMPATH: Given a graph , decide if has a path that visits all the vertices of .G G G

We’ll learn about the following and more in this course:

Glimpses of this Course

• P vs NP:

P = Set of problems that are polynomial-time solvable.

NP = Set of problems whose solutions are polynomial-time verifiable.

For instance,
 PATH: Given a graph and decide if there is a path from to .G u, v ∈ G, u v
 HAMPATH: Given a graph , decide if has a path that visits all the vertices of .G G G
PATH P and HAMPATH NP.∈ ∈

We’ll learn about the following and more in this course:

Glimpses of this Course

• P vs NP:

P = Set of problems that are polynomial-time solvable.

NP = Set of problems whose solutions are polynomial-time verifiable.

For instance,
 PATH: Given a graph and decide if there is a path from to .G u, v ∈ G, u v
 HAMPATH: Given a graph , decide if has a path that visits all the vertices of .G G G
PATH P and HAMPATH NP.∈ ∈

• Are there problems solvable in time that are not solvable in time?O(n3) O(n)

We’ll learn about the following and more in this course:

Glimpses of this Course

Glimpses of this Course

• Given a directed graph and , can we find whether in logspace?G u, v ∈ G u ⇝ v

Glimpses of this Course

• Given a directed graph and , can we find whether in logspace?G u, v ∈ G u ⇝ v
 Or is L NL?=

Glimpses of this Course

• Problems beyond NP. For instance,

• Given a directed graph and , can we find whether in logspace?G u, v ∈ G u ⇝ v
 Or is L NL?=

Glimpses of this Course

• Problems beyond NP. For instance,

 INDSET: Given a graph and , decide if has an independent set of size .G k ∈ ℤ+ G k

• Given a directed graph and , can we find whether in logspace?G u, v ∈ G u ⇝ v
 Or is L NL?=

Glimpses of this Course

• Problems beyond NP. For instance,

 INDSET: Given a graph and , decide if has an independent set of size .G k ∈ ℤ+ G k
 Easily verifiable solutions to INDSET exist. (INDSET NP)∈

• Given a directed graph and , can we find whether in logspace?G u, v ∈ G u ⇝ v
 Or is L NL?=

Glimpses of this Course

• Problems beyond NP. For instance,

 INDSET: Given a graph and , decide if has an independent set of size .G k ∈ ℤ+ G k
 Easily verifiable solutions to INDSET exist. (INDSET NP)∈

• Given a directed graph and , can we find whether in logspace?G u, v ∈ G u ⇝ v
 Or is L NL?=

EXACT-INDSET: Given a graph and , decide if the size of the largest

independent set of is .

G k ∈ ℤ+

G k

Glimpses of this Course

• Problems beyond NP. For instance,

 INDSET: Given a graph and , decide if has an independent set of size .G k ∈ ℤ+ G k
 Easily verifiable solutions to INDSET exist. (INDSET NP)∈

• Given a directed graph and , can we find whether in logspace?G u, v ∈ G u ⇝ v
 Or is L NL?=

EXACT-INDSET: Given a graph and , decide if the size of the largest

independent set of is .

G k ∈ ℤ+

G k
Easily verifiable solutions to EXACT-INDSET seem to not exist. (EXACT-INDSET)∈ Σp

2

Glimpses of this Course

Glimpses of this Course

• Can we use randomness to speed up the computation?

Glimpses of this Course

• Can we use randomness to speed up the computation?

 P = Set of problems that are polytime solvable by deterministic algorithm.

Glimpses of this Course

• Can we use randomness to speed up the computation?

 P = Set of problems that are polytime solvable by deterministic algorithm.

 BPP = Set of problems that are polytime solvable by probabilistic algorithm.

Glimpses of this Course

• Can we use randomness to speed up the computation?

 P = Set of problems that are polytime solvable by deterministic algorithm.

 BPP = Set of problems that are polytime solvable by probabilistic algorithm.

For instance,

Glimpses of this Course

• Can we use randomness to speed up the computation?

 P = Set of problems that are polytime solvable by deterministic algorithm.

 BPP = Set of problems that are polytime solvable by probabilistic algorithm.

For instance,

 PRIMES: Is prime?x

Glimpses of this Course

• Can we use randomness to speed up the computation?

 P = Set of problems that are polytime solvable by deterministic algorithm.

 BPP = Set of problems that are polytime solvable by probabilistic algorithm.

For instance,

 PRIMES: Is prime?x (Is in BPP. Was shown to be in P after a long effort. [AKS’02])

Glimpses of this Course

• Can we use randomness to speed up the computation?

 P = Set of problems that are polytime solvable by deterministic algorithm.

 BPP = Set of problems that are polytime solvable by probabilistic algorithm.

For instance,

 PRIMES: Is prime?x
 PIT (Polynomial Identity Testing): Given a multivariate polynomial with integer

(Is in BPP. Was shown to be in P after a long effort. [AKS’02])

Glimpses of this Course

• Can we use randomness to speed up the computation?

 P = Set of problems that are polytime solvable by deterministic algorithm.

 BPP = Set of problems that are polytime solvable by probabilistic algorithm.

For instance,

 PRIMES: Is prime?x
 PIT (Polynomial Identity Testing): Given a multivariate polynomial with integer

 coefficients, find whether there is an assignment of values to variables such that

(Is in BPP. Was shown to be in P after a long effort. [AKS’02])

Glimpses of this Course

• Can we use randomness to speed up the computation?

 P = Set of problems that are polytime solvable by deterministic algorithm.

 BPP = Set of problems that are polytime solvable by probabilistic algorithm.

For instance,

 PRIMES: Is prime?x
 PIT (Polynomial Identity Testing): Given a multivariate polynomial with integer

 coefficients, find whether there is an assignment of values to variables such that

 polynomial evaluates to non-zero.

(Is in BPP. Was shown to be in P after a long effort. [AKS’02])

Glimpses of this Course

• Can we use randomness to speed up the computation?

 P = Set of problems that are polytime solvable by deterministic algorithm.

 BPP = Set of problems that are polytime solvable by probabilistic algorithm.

For instance,

 PRIMES: Is prime?x
 PIT (Polynomial Identity Testing): Given a multivariate polynomial with integer

 coefficients, find whether there is an assignment of values to variables such that

 polynomial evaluates to non-zero.

(Is in BPP. Was shown to be in P after a long effort. [AKS’02])

(Is in BPP, but not known to be in P.)

Administrative Details

Administrative Details
Grading:

Administrative Details
Grading:

• - Project (a presentation on a paper/topic in groups of two)20 %

Administrative Details
Grading:

• - Project (a presentation on a paper/topic in groups of two)20 %

• - Best 2 out of 3 quizzes (Mostly MCQs and T/F)20 %

Administrative Details
Grading:

• - Project (a presentation on a paper/topic in groups of two)20 %

• - Best 2 out of 3 quizzes (Mostly MCQs and T/F)20 %

• - Minors (15% each)30 %

Administrative Details
Grading:

• - Project (a presentation on a paper/topic in groups of two)20 %

• - Best 2 out of 3 quizzes (Mostly MCQs and T/F)20 %

• - Minors (15% each)30 %

• - Major30 %

Administrative Details
Grading:

• - Project (a presentation on a paper/topic in groups of two)20 %

• - Best 2 out of 3 quizzes (Mostly MCQs and T/F)20 %

• - Minors (15% each)30 %

• - Major30 %

• - Problem sets with solutions or solution links0 %

Administrative Details
Grading:

• - Project (a presentation on a paper/topic in groups of two)20 %

• - Best 2 out of 3 quizzes (Mostly MCQs and T/F)20 %

• - Minors (15% each)30 %

• - Major30 %

• - Problem sets with solutions or solution links0 %

Book: Computational Complexity: A Modern Approach by Arora and Barak

Administrative Details
Grading:

• - Project (a presentation on a paper/topic in groups of two)20 %

• - Best 2 out of 3 quizzes (Mostly MCQs and T/F)20 %

• - Minors (15% each)30 %

• - Major30 %

• - Problem sets with solutions or solution links0 %

Book: Computational Complexity: A Modern Approach by Arora and Barak

Office Hours: Mail me to fix an appointment

Administrative Details
Grading:

• - Project (a presentation on a paper/topic in groups of two)20 %

• - Best 2 out of 3 quizzes (Mostly MCQs and T/F)20 %

• - Minors (15% each)30 %

• - Major30 %

• - Problem sets with solutions or solution links0 %

Book: Computational Complexity: A Modern Approach by Arora and Barak

Course Site: http://home.iitj.ac.in/~vimalraj/courses/ct/csl7140.html

Office Hours: Mail me to fix an appointment

