Lecture 1

Course Overview

Overview of Complexity Theory

Overview of Complexity Theory

Algorithms vs Complexity Theory:

Overview of Complexity Theory

Algorithms vs Complexity Theory:

OUR FIELD HAS BEEN
STRUGGLING WITH THIS
PROBLEM FOR YEARS.

|

|

Overview of Complexity Theory

Algorithms vs Complexity Theory:

OUR FIELD HAS BEEN STRUGGLE NO MORE!

STRUGGLING WITH THIS T™M HERE TO SOLVE

PROBLEM FOR YEARS. IT JITH ALGORITHITS!
|

i

Overview of Complexity Theory

Algorithms vs Complexity Theory:

OUR FIELD HAS BEEN STRUGGLE NO MORE!

STRUGGLING WITH THIS T™M HERE TO SOLVE

PROBLEM FOR YEARS. IT JITH ALGORITHITS!
|

i

Overview of Complexity Theory

Algorithms vs Complexity Theory:

OUR FIELD HAS BEEN
STRUGGLING WITH THIS
PROBLEM FOR YEARS.

|

STRUGGLE NO MORE!
T™M HERE TO SOLVE
IT JITH ALGORITHITS!

SIX MONTHS LATER:

WOW, THIS PROBLEM
15 RLHLLY HARD.

YoU DONT 5/9)/

o

Overview of Complexity Theory

Algorithms vs Complexity Theory:

OUR FIELD HAS BEEN
STRUGGLING WITH THIS
PROBLEM FOR YEARS.

|

STRUGGLE NO MORE!
T™M HERE TO SOLVE
IT JITH ALGORITHITS!

SIX MONTHS LATER:

WOW, THIS PROBLEM
15 RLHLLY HARD.

YoU DONT 5/9)/

| 1

o

Algorithms focus on solving computation problems efficiently,

Overview of Complexity Theory

Algorithms vs Complexity Theory:

SIX MONTHS LATER:
OUR FIELD HASBEEN || STRUGGLE No MORE! ' O LATER
STRUGGLING UTHTHIS | | M HERE TO S0LVE WOV, THIS PROBLEM
PROBLEM FOR YEARS. IT JITH ALGORITHIMS/ 15 RLHLLY HARD,
| YoU DO/V7'5AY

A

Algorithms focus on solving computation problems efticiently, while Complexity theory

Overview of Complexity Theory

Algorithms vs Complexity Theory:

SIX MONTHS LATER:
OUR FIELDHASBEEN || STRUGGLE NO MORE! o LA
STRUGGLING WITHTHIS || T'™M HERE TO SOLVE WO, THIS PROBLEM
PROBLEM FOR YEARS. IT JITH ALGORITHIMS/ 15 RLHLLY HARD,
| YoU DO/V7'5AY

A

Algorithms focus on solving computation problems efticiently, while Complexity theory

studies inherent difficulty of problems.

Overview of Complexity Theory

Overview of Complexity Theory

Example: Given two numbers x and y, compute x. y.

Overview of Complexity Theory

Example: Given two numbers x and y, compute x. y.

® Design an algorithm to compute x.y that runs in T time.

Overview of Complexity Theory

Example: Given two numbers x and y, compute x. y.

® Design an algorithm to compute x.y that runs in T time. +—— Algorithms

Overview of Complexity Theory

Example: Given two numbers x and y, compute x. y.
® Design an algorithm to compute x.y that runs in T time. +—— Algorithms

® Prove that no algorithm exists that runs in less than 71" time.

Overview of Complexity Theory

Example: Given two numbers x and y, compute x. y.
® Design an algorithm to compute x.y that runs in T time. +—— Algorithms

® Prove that no algorithm exists that runs in less than T'time. 4— Complexity Theory

Overview of Complexity Theory

Example: Given two numbers x and y, compute x. y.
® Design an algorithm to compute x.y that runs in T time. +—— Algorithms

® Prove that no algorithm exists that runs in less than T'time. 4— Complexity Theory

Central Goal of Complexity Theory: Proving non-existence of efficient algorithms for

Overview of Complexity Theory

Example: Given two numbers x and y, compute x. y.
® Design an algorithm to compute x.y that runs in T time. +—— Algorithms

® Prove that no algorithm exists that runs in less than T'time. 4— Complexity Theory

Central Goal of Complexity Theory: Proving non-existence of efficient algorithms for

computational problems

Overview of Complexity Theory

Example: Given two numbers x and y, compute x. y.
® Design an algorithm to compute x.y that runs in T time. +—— Algorithms

® Prove that no algorithm exists that runs in less than T'time. 4— Complexity Theory

Central Goal of Complexity Theory: Proving non-existence of efficient algorithms for

computational problems w.r.t resources such as time,

Overview of Complexity Theory

Example: Given two numbers x and y, compute x. y.
® Design an algorithm to compute x.y that runs in T time. +—— Algorithms

® Prove that no algorithm exists that runs in less than T'time. 4— Complexity Theory

Central Goal of Complexity Theory: Proving non-existence of efficient algorithms for

computational problems w.r.t resources such as time, space,

Overview of Complexity Theory

Example: Given two numbers x and y, compute x. y.
® Design an algorithm to compute x.y that runs in T time. +—— Algorithms

® Prove that no algorithm exists that runs in less than T'time. 4— Complexity Theory

Central Goal of Complexity Theory: Proving non-existence of efficient algorithms for

computational problems w.r.t resources such as time, space, interactions,

Overview of Complexity Theory

Example: Given two numbers x and y, compute x. y.
® Design an algorithm to compute x.y that runs in T time. +—— Algorithms

® Prove that no algorithm exists that runs in less than T'time. 4— Complexity Theory

Central Goal of Complexity Theory: Proving non-existence of efficient algorithms for

computational problems w.r.t resources such as time, space, interactions, randomness, etc.

Overview of Complexity Theory

Example: Given two numbers x and y, compute x. y.
® Design an algorithm to compute x.y that runs in T time. +—— Algorithms

® Prove that no algorithm exists that runs in less than T'time. 4— Complexity Theory

Central Goal of Complexity Theory: Proving non-existence of efficient algorithms for

computational problems w.r.t resources such as time, space, interactions, randomness, etc.

T Haven't been very successful

Overview of Complexity Theory

Overview of Complexity Theory

What we actually do in Complexity Theory:

Overview of Complexity Theory

What we actually do in Complexity Theory:

® Prove non-existence of efficient algorithms.

Overview of Complexity Theory

What we actually do in Complexity Theory:

® Prove non-existence of efficient algorithms. (E.g. GeneralisedChess & P)

Overview of Complexity Theory

What we actually do in Complexity Theory:

® Prove non-existence of efficient algorithms. (E.g. GeneralisedChess & P)

® |nterrelate different complexity questions. For instance,

Overview of Complexity Theory

What we actually do in Complexity Theory:

® Prove non-existence of efficient algorithms. (E.g. GeneralisedChess & P)

® |nterrelate different complexity questions. For instance,

Question: Are problems P, and P, not solvable in polynomial time?

Overview of Complexity Theory

What we actually do in Complexity Theory:

® Prove non-existence of efficient algorithms. (E.g. GeneralisedChess & P)

® |nterrelate different complexity questions. For instance,

Question: Are problems P, and P, not solvable in polynomial time?

Interrelation: P, is not solvable in poly. time

Overview of Complexity Theory

What we actually do in Complexity Theory:

® Prove non-existence of efficient algorithms. (E.g. GeneralisedChess & P)

® |nterrelate different complexity questions. For instance,

Question: Are problems P, and P, not solvable in polynomial time?

Interrelation: P; is not solvable in poly. time <= P, is not solvable in poly. time

Overview of Complexity Theory

What we actually do in Complexity Theory:

® Prove non-existence of efficient algorithms. (E.g. GeneralisedChess & P)

® |nterrelate different complexity questions. For instance,
Question: Are problems P, and P, not solvable in polynomial time?

Interrelation: P; is not solvable in poly. time <= P, is not solvable in poly. time

® Classity problems based on the amount of resources required to solve them ana

compare those classes.

Overview of Complexity Theory

What we actually do in Complexity Theory:

® Prove non-existence of efficient algorithms. (E.g. GeneralisedChess & P)

® |nterrelate different complexity questions. For instance,
Question: Are problems P, and P, not solvable in polynomial time?

Interrelation: P; is not solvable in poly. time <= P, is not solvable in poly. time

® Classity problems based on the amount of resources required to solve them ana

compare those classes.

For instance, let X, Y, and Z be the set of problems solvable in logspace, polynomial

time, and polynomial space, respectively.

Overview of Complexity Theory

What we actually do in Complexity Theory:

® Prove non-existence of efficient algorithms. (E.g. GeneralisedChess & P)

® |nterrelate different complexity questions. For instance,
Question: Are problems P, and P, not solvable in polynomial time?

Interrelation: P; is not solvable in poly. time <= P, is not solvable in poly. time

® Classity problems based on the amount of resources required to solve them ana

compare those classes.

For instance, let X, Y, and Z be the set of problems solvable in logspace, polynomial

time, and polynomial space, respectively. Then, X C ¥ C Z.

Glimpses of this Course

Glimpses of this Course

We'll learn about the following and more in this course:

Glimpses of this Course

We'll learn about the following and more in this course:

® P vs NP:

Glimpses of this Course

We'll learn about the following and more in this course:
® Pvs NP:

P = Set of problems that are polynomial-time solvable.

Glimpses of this Course

We'll learn about the following and more in this course:
® Pvs NP:

P = Set of problems that are polynomial-time solvable.

NP = Set of problems whose solutions are polynomial-time verifiable.

Glimpses of this Course

We'll learn about the following and more in this course:
® Pvs NP:

P = Set of problems that are polynomial-time solvable.

NP = Set of problems whose solutions are polynomial-time verifiable.

For instance,

Glimpses of this Course

We'll learn about the following and more in this course:
® Pvs NP:

P = Set of problems that are polynomial-time solvable.

NP = Set of problems whose solutions are polynomial-time verifiable.

For instance,

PATH: Given a graph G and u,v € G, decide if there is a path from u to v.

Glimpses of this Course

We'll learn about the following and more in this course:
® Pvs NP:

P = Set of problems that are polynomial-time solvable.
NP = Set of problems whose solutions are polynomial-time verifiable.
For instance,
PATH: Given a graph G and u,v € G, decide if there is a path from u to v.
HAMPATH: Given a graph G, decide it G has a path that visits all the vertices ot G.

Glimpses of this Course

We'll learn about the following and more in this course:
® Pvs NP:

P = Set of problems that are polynomial-time solvable.

NP = Set of problems whose solutions are polynomial-time verifiable.

For instance,
PATH: Given a graph G and u,v € G, decide if there is a path from u to v.
HAMPATH: Given a graph G, decide it G has a path that visits all the vertices ot G.
PATH € P and HAMPATH € NP.

Glimpses of this Course

We'll learn about the following and more in this course:
® Pvs NP:

P = Set of problems that are polynomial-time solvable.

NP = Set of problems whose solutions are polynomial-time verifiable.

For instance,
PATH: Given a graph G and u,v € G, decide if there is a path from u to v.
HAMPATH: Given a graph G, decide it G has a path that visits all the vertices ot G.
PATH € P and HAMPATH € NP.

® Are there problems solvable in O(n?) time that are not solvable in O(n) time?

Glimpses of this Course

Glimpses of this Course

® Given a directed graph G and u, v € G, can we find whether u «» v in logspace?

Glimpses of this Course

® Given a directed graph G and u, v € G, can we find whether u «» v in logspace?
Oris L=NL?

Glimpses of this Course

® Given a directed graph G and u, v € G, can we find whether u «» v in logspace?
Oris L=NL?

® Problems beyond NP. For instance,

Glimpses of this Course

® Given a directed graph G and u, v € G, can we find whether u «» v in logspace?
Oris L=NL?

® Problems beyond NP. For instance,

INDSET: Given a graph G and k € Z™, decide if G has an independent set of size k.

Glimpses of this Course

® Given a directed graph G and u, v € G, can we find whether u «» v in logspace?
Oris L=NL?

® Problems beyond NP. For instance,

INDSET: Given a graph G and k € Z™, decide if G has an independent set of size k.
Easily veritiable solutions to INDSET exist. (INDSET € NP)

Glimpses of this Course

® Given a directed graph G and u, v € G, can we find whether u «» v in logspace?
Oris L=NL?

® Problems beyond NP. For instance,

INDSET: Given a graph G and k € Z™, decide if G has an independent set of size k.
Easily veritiable solutions to INDSET exist. (INDSET € NP)

EXACT-INDSET: Given a graph G and k € Z™, decide if the size of the largest

independent set of G is k.

Glimpses of this Course

® Given a directed graph G and u, v € G, can we find whether u «» v in logspace?

Oris L= NL?

® Problems beyond NP. For instance,

INDSET: Given a graph G and k € Z™, decide if G has an independent set of size k.
Easily veritiable solutions to INDSET exist. (INDSET € NP)

EXACT-INDSET: Given a graph G and k € Z™, decide if the size of the largest

independent set of G is k.
Easily verifiable solutions to EXACT-INDSET seem to not exist. (EXACT-INDSET € X7

Glimpses of this Course

Glimpses of this Course

® Can we use randomness to speed up the computation?

Glimpses of this Course

® Can we use randomness to speed up the computation?

P = Set of problems that are polytime solvable by deterministic algorithm.

Glimpses of this Course

® Can we use randomness to speed up the computation?
P = Set of problems that are polytime solvable by deterministic algorithm.

BPP = Set of problems that are polytime solvable by probabilistic algorithm.

Glimpses of this Course

® Can we use randomness to speed up the computation?
P = Set of problems that are polytime solvable by deterministic algorithm.

BPP = Set of problems that are polytime solvable by probabilistic algorithm.

For instance,

Glimpses of this Course

® Can we use randomness to speed up the computation?
P = Set of problems that are polytime solvable by deterministic algorithm.

BPP = Set of problems that are polytime solvable by probabilistic algorithm.

For instance,

PRIMES: |s x prime?

Glimpses of this Course

® Can we use randomness to speed up the computation?
P = Set of problems that are polytime solvable by deterministic algorithm.

BPP = Set of problems that are polytime solvable by probabilistic algorithm.

For instance,

PRIMES: Is x prime? (Is in BPP. Was shown to be in P after a long effort. [AKS'02])

Glimpses of this Course

® Can we use randomness to speed up the computation?
P = Set of problems that are polytime solvable by deterministic algorithm.

BPP = Set of problems that are polytime solvable by probabilistic algorithm.

For instance,
PRIMES: Is x prime? (Is in BPP. Was shown to be in P after a long effort. [AKS'02])

PIT (Polynomial Identity Testing): Given a multivariate polynomial with integer

Glimpses of this Course

® Can we use randomness to speed up the computation?
P = Set of problems that are polytime solvable by deterministic algorithm.

BPP = Set of problems that are polytime solvable by probabilistic algorithm.

For instance,
PRIMES: Is x prime? (Is in BPP. Was shown to be in P after a long effort. [AKS'02])

PIT (Polynomial Identity Testing): Given a multivariate polynomial with integer

coefticients, find whether there is an assignment of values to variables such that

Glimpses of this Course

® Can we use randomness to speed up the computation?
P = Set of problems that are polytime solvable by deterministic algorithm.

BPP = Set of problems that are polytime solvable by probabilistic algorithm.

For instance,
PRIMES: Is x prime? (Is in BPP. Was shown to be in P after a long effort. [AKS'02])

PIT (Polynomial Identity Testing): Given a multivariate polynomial with integer

coefticients, find whether there is an assignment of values to variables such that

polynomial evaluates to non-zero.

Glimpses of this Course

® Can we use randomness to speed up the computation?
P = Set of problems that are polytime solvable by deterministic algorithm.

BPP = Set of problems that are polytime solvable by probabilistic algorithm.

For instance,
PRIMES: Is x prime? (Is in BPP. Was shown to be in P after a long effort. [AKS'02])
PIT (Polynomial Identity Testing): Given a multivariate polynomial with integer
coefticients, find whether there is an assignment of values to variables such that

polynomial evaluates to non-zero. (Is in BPP, but not known to be in P.)

Administrative Details

Administrative Details

Grading:

Administrative Details

Grading:

® 20 % - Project (a presentation on a paper/topic in groups of two)

Administrative Details

Grading:

® 20 % - Project (a presentation on a paper/topic in groups of two)

® 20 % - Best 2 out of 3 quizzes (Mostly MCQs and T/F)

Administrative Details

Grading:

® 20 % - Project (a presentation on a paper/topic in groups of two)
® 20 % - Best 2 out of 3 quizzes (Mostly MCQs and T/F)
® 30% - Minors (15% each)

Administrative Details

Grading:

® 20 % - Project (a presentation on a paper/topic in groups of two)
® 20 % - Best 2 out of 3 quizzes (Mostly MCQs and T/F)

® 30% - Minors (15% each)

® 30 % - Major

Administrative Details

Grading:

® 20 % - Project (a presentation on a paper/topic in groups of two)
® 20 % - Best 2 out of 3 quizzes (Mostly MCQs and T/F)

® 30% - Minors (15% each)

® 30 % - Major

® 0% - Problem sets with solutions or solution links

Administrative Details

Grading:

® 20 % - Project (a presentation on a paper/topic in groups of two)
® 20 % - Best 2 out of 3 quizzes (Mostly MCQs and T/F)

® 30% - Minors (15% each)

® 30 % - Major

® 0% - Problem sets with solutions or solution links

Book: Computational Complexity: A Modern Approach by Arora and Barak

Administrative Details

Grading:

® 20 % - Project (a presentation on a paper/topic in groups of two)
® 20 % - Best 2 out of 3 quizzes (Mostly MCQs and T/F)

® 30% - Minors (15% each)

® 30 % - Major

® 0% - Problem sets with solutions or solution links

Book: Computational Complexity: A Modern Approach by Arora and Barak

Office Hours: Mail me to fix an appointment

Administrative Details

Grading:

® 20 % - Project (a presentation on a paper/topic in groups of two)

® 20 % - Best 2 out of 3 quizzes (Mostly MCQs and T/F)
® 30% - Minors (15% each)
® 30 % - Major

® 0% - Problem sets with solutions or solution links

Book: Computational Complexity: A Modern Approach by Arora and Barak
Office Hours: Mail me to fix an appointment

Course Site: http://home.iitj.ac.in/~vimalraj/courses/ct/csl7/140.html

